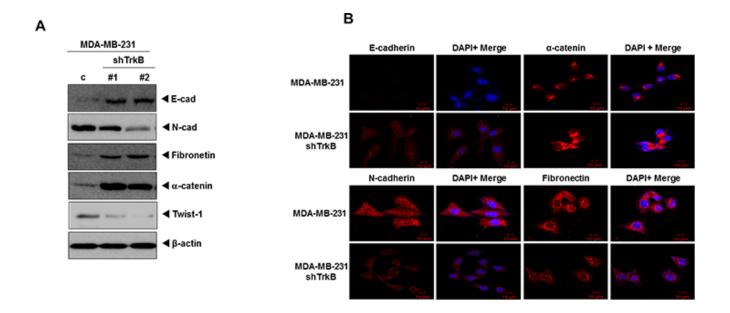
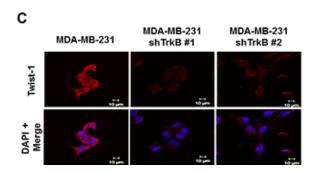
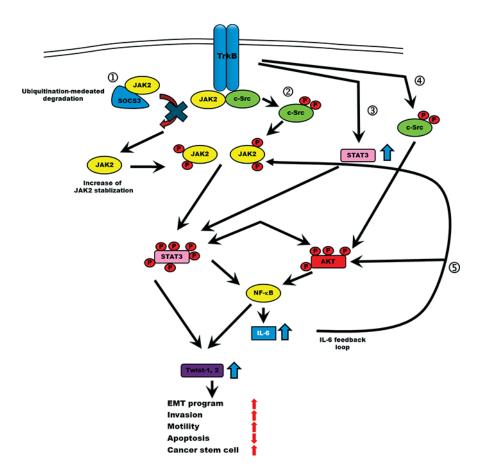

SUPPLEMENTARY FIGURES AND TABLES


Supplementary Figure 1: Identification of TrkB or c-Src suppression of MDA-MB-231 and Hs578T TrkB-shRNA or c-Src-shRNA cells. A. Western blot analysis of TrkB expression in MDA-MB-231 and Hs578T control-shRNA or TrkB-shRNA cells. B. Relative expression of c-Src in MDA-MB-231 control-shRNA or c-Src-shRNA cells, as determined by RT-PCR or western blotting. β-actin were used as loading controls.



Supplementary Figure 2: TrkB upregulates activation of the JAK2/STAT3 pathway through c-Src-dependent or independent regulation. A. Western blot analysis of whole-cell lysates and immunoprecipitates derived from 293T cells transfected with the V5-TrkB and Myc-Jak2 constructs as indicated. B. Western blot analysis of whole-cell lysates and immunoprecipitates derived from 293T cells transfected with the V5-TrkB, HA-c-Src, and Myc-Jak2 constructs as indicated. C. Identification of JAK2 functional domain responsible for interaction with TrkB. Western blot analysis of whole-cell lysates and immunoprecipitates derived from 293T cells transfected with V5-TrkB, and Myc-Jak2 deletion constructs as indicated. D. Western blot analysis of whole-cell lysates and immunoprecipitates derived from SYF-TrkB cells or SYF-c-Src-TrkB cells transfected with the Myc-Jak2 construct as indicated. E. Identification of endogenous TrkB/JAK2 complex formation. F. Luciferase reporter assay of Twist-1 and Twist-2 in MDA-MB-231 control-shRNA or TrkB-shRNA cells treated with or without SU6656. Each bar represents the mean ± SEM of three experiments. G. Luciferase reporter assay of Twist-1 and Twist-2 in SYF, SYF-TrkB, SYF-c-Src, and SYF-c-Src-TrkB cells. Each bar represents the mean ± SEM of three experiments.



Supplementary Figure 3: TrkB induces expression of Twist-1 and Twist-2 via induction of STAT3 expression. A. Relative expression of mRNA encoding STAT3 in MDA-MB-231 and Hs578T control-shRNA or TrkB-shRNA cells as determined by quantitative RT-PCR. The 18S mRNA level was used to normalize the variability in template loading. B. Luciferase reporter assay of STAT3 in MDA-MB-231 and Hs578T control-shRNA or TrkB-shRNA cells. Each bar represents the mean ± SEM of three experiments. C. Relative expression of the mRNAs encoding Twist-1 and Twist-2 in MDA-MB-231 and Hs578T control-shRNA or TrkB-shRNA cells as determined by quantitative RT-PCR. The 18S mRNA level was used to normalize the variability in template loading. D. Luciferase reporter assay of Twist-1 and Twist-2 in MDA-MB-231 and Hs578T control-shRNA or TrkB-shRNA cells. Each bar represents the mean ± SEM of three experiments.

Supplementary Figure 4: TrkB induces EMT program by upregulation of Twist-1. A. Western blot analysis of expression of E-cadherin, N-cadherin, fibronectin, α-catenin, and Twist-1 proteins in MDA-MB-231 control-shRNA or TrkB-shRNA cells. β-actin was used as a loading control. **B.** Immunofluorescence images of E-cadherin, N-cadherin, α-catenin, and fibronectin in MDA-MB-231 control-shRNA or TrkB-shRNA cells. The red signal represents staining of the corresponding protein, while the blue signal represents DAPI staining. **C.** Immunofluorescence images of Twist-1 in MDA-MB-231 control-shRNA or TrkB-shRNA cells. The red signal represents staining of Twist-1 protein, while the blue signal represents DAPI staining.

Supplementary Figure 5: Model of activation of PI3K/AKT and IL-6/JAK2/STAT3/Twist-1 pathway by TrkB. TrkB expression increased cell proliferation and motility via (1) upregulation of JAK2 by inhibition of SOCS3-mediated JAK2 degradation and (2) activation of the JAK2/STAT3 pathway through c-Src activation and (3) activation of the JAK2/STAT3/Twist axis through upregulation of STAT3 expression and (4) activation of PI3K/AKT pathway through c-Src activation and (5) positive feedback regulation through induction of IL-6 secretion. Therefore, it is likely that TrkB regulates the activity of the IL-6/JAK2/STAT3/Twist axis to generate relatively unlimited numbers of cancer stem cells, and to obtain the metastatic potential of cancer cells through induction of EMT.

Supplementary Table S1: shRNA sequences for human TrkB genes

Gene name	Primer sequences	
Human TrkB-#1	5' CCGGCTGGGTGAGGGAGCCTTTGCTCGAG CAAAGGCTCCCTCACCCAGTTTTTG3'	pLKO
Human TrkB-#2	5' CCGG ATGCTCCACATTGCCAGTCCTCGAG GACTGGCAATGTGGAGCATTTTTTG3'	pLKO

Supplementary Table S2: Primer sequences for RT-PCR and quantitative RT-PCR

Supplementary	Table 52. I Timer se	quences for	IXI-I CIX and	quantitative ix	1-1 CIX
RT-PCR Primers					

Gene	Primers
Human JAK2	F: 5'-CTCGAGGTGCTGAAGCTCCT-3' R: 5'-AAATCATGCCGCCACTGAG-3'
Human Gapdh	F: 5'-CGAGATCCCTCCAAAATCAA-3' R: 5'-TGTGGTCATGAGTCCTTCCA-3'
Dog SIP1	F: 5'-CAGATCGAAGCAGCTCAATG-3' R: 5'-CCTTCAGCGCATAACCTTTC-3'
Dog Goosecoid	F: 5'-GTCAGATCTCCCGCTTTGAG-3' R: 5'-GTCGGGGTACTGGTTCTGC-3'
Dog Slug	F: 5'-TCCATCTGACACCTCATCCA-3' R: 5'-TTGCCACAGATCTTGCAGAC-3'
Dog E12	F: 5'-GCAGACGAAGATGGAAGACC-3' R: 5'-ACCTTCTCCCGATTGAT-3'
Dog Twist-2	F: 5'-GCAAGAAGTCGAGCGAAGAT-3' R: 5'-CTGCAGGACCTGGTGAGGA-3'
Dog gapdh	F: 5'-AAGGTCATCCCTGAGCTGAA-3' R: 5'-AGGCCATGTAGACCATGAGG-3'

Quantitative RT-PCR

Dog E-cadherin	F: 5'-AAAACCCACAGCCTCATGTC-3' R: 5'-TCTAGGGTGGTCACCTGGTC-3'
Dog N-cadherin	F: 5'-CCCAAGACAAGCGACTAAGC-3' R: 5'-TGACAGCTGACCTGAGATGG-3'
Dog Fibronectin	F: 5'-CAGGATGGACATCTGTGGTG-3' R: 5'-GTTGTCTCCTGCCCTCAG-3'
Dog gapdh	F: 5'-AACATCATCCCTGCTTCCAC-3' R: 5'-AGACCACCTGGTCCTCAGTG-3'
Human E-cadherin	F: 5'-TGCCCAGAAAATGAAAAAGG-3' R: 5'-GTGTATGTGGCAATGCGTTC-3'
Human N-cadherin	F: 5'-ACAGTGGCCACCTACAAAGG-3' R: 5'-CCGAGATGGGGTTGATAATG-3'
Human Fibronectin	F: 5'-CAGTGGGAGACCTCGAGAAG-3' R: 5'-TCCCTCGGAACATCAGAAAC-3'
Human Vimentin	F: 5'-GAGAACTTTGCCGTTGAAGC-3' R: 5'-GCTTCCTGTAGGTGGCAATC-3'
Human Twist-1	F: 5'-CGACGAGCTGGACTCCAAG-3' R: 5'-CCTCCATCCTCCAGACCGA-3'
Human Twist-2	F: 5'-CAGAGCGACGAGATGGACAA-3' R: 5'-CACACGGAGAAGGCGTAGC-3'
Human STAT3	F: 5'-GGTCTGGCTGGACAATATCATTG-3' R: 5'-ATGATGTACCCTTCGTTCCAAAG-3'
Human 18S	F: 5'-ACCGCAGCTAGGAATAATGGA-3' R: 5'-GCCTCAGTTCCGAAAACCA-3'